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Abstract—This paper proposes a method to enable real-time 

static hand gestures to control number and command input into 

computer systems. The method combines static hand gesture 

recognition and skeletonization using MediaPipe Hands, 

skeleton classification using a Support Vector Machine (SVM), 

and an input debouncing method with a novel extension to 

enable repeating. The classification method has an accuracy of 

88%, less than that achieved by earlier work. The debouncer 

out-performs alternatives, and the method is found to have a 

viable throughput of 31.76 frames per second. 
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I. INTRODUCTION 

Hand gestures are recognized as a natural form of human 
expression and interaction. Vision-based approaches to 
gesture detection and classification can allow for HCI to 
become more comfortable for people as computers become 
increasingly integrated in our lives [1]. Despite this promise, 
such interfaces remain uncommon in consumer-facing 
systems today, and most publications focus on implementing 
individual components of such interfaces without considering 
the whole. 

This paper proposes a method to enable real-time digit-by-
digit number input using hand gestures, with the intention of 
producing a solution suitable for providing an HCI interface 
for setting and controlling a kitchen timer or microwave, but 
which can be extended for other applications in future. For 
applicability in such an environment, the input must operate in 
real-time on commodity devices while remaining accurate 
enough to provide a mode of input that is sufficiently efficient 
and reliable for everyday use.  

The solution proposed in this paper builds on prior work to 
produce a pipeline that consists of the following major steps 
performed for each frame of input video: 

1. Hand detection and pose estimation. 

2. Skeleton classification into a number from 0-5 
(inclusive) using either Heuristic or Support Vector 
Machine (SVM) approaches (if a hand is detected). 

3. Input debouncing and time-based output repeating. 

II. BACKGROUND 

Large parts of this problem have already been solved to a 
satisfactory degree. 

Zhang et al. developed a hand detection and pose 
estimation (skeletonization) method and published their work 
for re-use in the Hands module of the MediaPipe framework 
[2]. Previous work has shown that MediaPipe Hands works 
with an accuracy of 84.57% for static single hands [3], which 
should be sufficient for this purpose. In addition, the module 

provides a simple API and works efficiently on commodity 
hardware, with their preferred hand landmark model taking 
only 16.1ms (62fps) to place landmarks on an image using the 
Pixel 3 mobile phone [2]. 

Sung et al. devised both a Heuristic and a Neural Network 
(NN) approach to real-time hand classification of MediaPipe 
Hands skeleton data into gestures that runs at 30fps on 
“mainstream mobile devices” [4]. The heuristic classifier was 
found to be more intuitive for developers, but less accurate and 
precise than the NN approach, having a recall rate of only 
44.4% compared to the NN’s 87.9% recall rate, both over an 
alphabet of 6 gestures. 

Osipov and Ostanin devised a similar method that operated 
at 71fps using an SVM with a one-to-one decision function to 
classify skeleton data sourced from MediaPipe Hands into an 
alphabet of 10 gestures [5]. They found that rbf, linear, and 
poly kernels all provided at least 98% accuracy at 71fps 
throughput while the sigmoid kernel had low accuracy. They 
also described experiencing low-accuracy MediaPipe Hands 
output for some of the training images in their dataset, which 
they attributed to the low resolution and bounding box 
cropping of the hand images in their dataset. 

SVMs are a type of supervised machine learning model 
often used for classification tasks. They are effective for 
classifying high-dimensional data with a light memory 
footprint [6]. 

The machine learning classification space lacks published 
methods for output debouncing. However, one promising 
post-processing method (ZYFGAS Debouncing) for 
debouncing gesture classification output is devised by Young, 
Stephens-Fripp, Gillett, Zhou, and Alici in [7]. This method 
minimizes the effect of individual incorrect predictions by 
culling them as soon as the input returns to the current gesture. 
This approach’s memory requirements scale linearly with the 
number of gestures recognized, limiting its viability for 
memory-constrained applications with many classifier 
outputs. However, this is unlikely to be an issue at current 
scales as ‘large’ image categorization datasets contain 11221 
[8] or 5247 [9] categories, amounting to only kilobytes of 
memory required for debouncing. This is no barrier for the 
proposed solution as it only recognizes ten distinct gestures. 
The ZYFGAS approach also adds some complexity to the 
debouncer as it has an ‘unknown’ state and requires an initial 
state. Simpler methods such as the time delay approach 
described in [10] and [11] do not have these deficiencies, 
though they require some work to be usefully adapted to this 
problem and are of unknown utility for this application. 

Prior work by Chung, Kim, Na, and Lee found that 
physical touchpads and touch-screen touchpads for numeric 
input had mean error rates of 5.82% and 5.67% respectively 



[12], translating to an accuracy of 94.18% and 94.33% 
respectively. While their sample size was quite small at only 
24 individuals, this result provides an approximate target for 
the accuracy of the proposed solution if it is to compete with 
these existing input methods. 

III. METHOD 

 

Fig. 1. Flow chart showing an overview of the proposed input handling 

software pipeline. 

The proposed method is composed of three steps 
performed on each frame of video according to the flow chart 
shown in Fig. 1. Each of these steps are described in more 
detail in their own subsections. 

A. Detection and skeletonization of hands 

MediaPipe Hands is a software library developed and 
maintained by Google that provides an API to detect, track, 
and provide skeleton data for hands when given an image or 
frame of video [13]. It is designed to run in real-time “on 
mobile GPUs with high prediction quality” [4], ensuring that 
it does not prevent the proposed method from maintaining 
high throughput on the target devices. 

An overview of the MediaPipe Hands hand detection and 
skeletonization process can be seen in Fig. 2. The hand 
detection bypass shown in the figure assumes that the model 
is being passed a video stream, making it suitable for use in 
the proposed solution. However, when MediaPipe Hands is 
used on still images to produce training data for the SVM 
model, this mode is unsuitable as hands will move 
significantly between ‘frames’ of this data. As such, this 
optimization is disabled in this context. 

 

Fig. 2. High-level overview of the MediaPipe Hands process, including the 

hand detection bypass optimization. Adapted from [2]. 

For each hand detected, MediaPipe returns the 3D 
coordinates of 21 keypoints for the locations shown in Fig. 3. 

One for the base of the palm, and four for each finger. The 
annotations always follow the order of the fingers from thumb 
to pinky rather than from left to right in the image, providing 
a stable identity for each finger as four keypoints at specific 
indices. This property means that the positions of individual 
fingers are captured, rather than the shape of the hand, 
allowing for gestures to be defined in relation to specific 
fingers. 

 

Fig. 3. A cropped image from the SVM training data [14] annotated with 

MediaPipe Hands keypoints and their indices. 

Once generated, each hand’s skeleton keypoints are passed 
into the skeleton classification step. 

B. Skeleton classification 

During skeleton classification, the keypoint data defining 
the skeleton of a single hand is classified into one of six classes 
corresponding to the integers in the range [0, 5] with each 
corresponding to a specific static hand gesture being 
performed. 

 

Fig. 4. An image from the Ren, Yuan, Meng, and Zhang dataset [14] for 

each label. 

The classification methods were evaluated for accuracy 
against the RGB images in the dataset developed by Ren, 
Yuan, Meng, and Zhang [14] (sample images shown in Fig. 
4), with horizontally mirrored images generated to increase the 
size and diversity of the dataset. The dataset was then split into 
training and testing sets, with 80% of the images in each label 
(mirrored images were considered their own label for this 
purpose) randomly picked into the training set and the 
remaining 20% moved into the testing set. The data was then 
pre-processed through MediaPipe Hands, producing a CSV 
file of the coordinates of the landmarks detected by MediaPipe 
Hands for each label directory, increasing the speed at which 
the classification methods could be trained and evaluated. 



This dataset was chosen as it contains high-resolution 
images of the required hand gestures, uncropped in a setting 
with a realistic background. This meant that MediaPipe Hands 
detected and skeletonized a hand in 96.8% of the images used 
for training and testing, with at least 94.0% (188) of the 200 
images per label being skeletonized. Another dataset 
containing 3600 100x100px images cropped to just the hand 
for each label [15] was evaluated and found to be unusable as 
MediaPipe detected only 15.4% of hands in total with 0.39% 
of images with the label ‘4’ skeletonized. This follows Osipov 
and Ostanin’s experience of poor MediaPipe Hands 
performance for cropped and low-resolution images. 

The following four classification methods were evaluated 
for accuracy: 

1. An adaptation of feature angle thresholding (FAT) as 
proposed by Sung et al. in [4]. 

2. Linear kernel for an SVM model operating with 
MediaPipe Hands skeleton data as proposed by Osipov and 
Ostanin in [5]. 

3. RBF kernel for an SVM model operating with 
MediaPipe Hands skeleton data as proposed by Osipov and 
Ostanin in [5]. 

4. RBF kernel for SVM operating with feature angles 
(SVM-FA) derived from FAT (A linear kernel was also 
evaluated but is omitted due to very similar accuracy results). 

1) FAT 
The FAT method was implemented in pure Python 3.10, 

using only the standard library. Unlike in [4], this 
implementation operated in  two dimensions. 

 

Fig. 5. Finger segments shown running from Si+1 to Si and each segment’s 

angle from the horizontal. 

 

Fig. 6. Vector addition diagrams showing S1, S2, and S3 added to S0 in the 

context of the thumb from Fig. 5. The blue angles shown are the finger angle 

candidates. In this case, 27° is the greatest angle and so is chosen as the finger 

angle F0. 

The method models each finger as four ‘segments’ (unit 
vectors) with an angle from the horizontal as shown in Fig. 5. 
For each finger the acute angle formed by the addition of the 
first segment to every other segment in the finger is computed 
and the difference between 180° and that angle is taken as a 
candidate finger angle, shown diagrammatically in Fig. 6. The 
finger angle is the candidate with the greatest magnitude. 

Formally and using Radians, the computation follows like 
so: 

For each pair (𝑃𝑖 , 𝑃𝑖+1) (where 𝑖 ∈ [0, 3] is an integer) of 
consecutive keypoints in a finger, the angle of the segment 𝑆𝑖 
is defined as:  

𝑆𝑖 = 𝑎𝑡𝑎𝑛2(𝑃𝑖+1𝑦
− 𝑃𝑖 𝑦

, 𝑃𝑖+1𝑥
− 𝑃𝑖𝑥

) 

 The angle of the finger 𝐹𝑖 is then taken to be: 

 

𝐹𝑖 = max  {||(𝜋 − 𝑆0) + 𝑆𝑗| − 𝜋 | | 𝑗 = 1. .3} 

Finally, each finger is assigned a hand-tuned finger angle 
threshold. The finger is counted as ‘straight’ if the finger angle 
is at least the threshold. The number produced by the FAT 
method is the number of fingers that are ‘straight’. The 
thresholds were tuned manually by experimentation, then later 
tested using the dataset and compared for accuracy against 
other classification methods. 

2) SVM models 
The first two SVM models differ only in the kernel chosen 

and so are discussed simultaneously in this section. 

The models are trained using identical datasets pre-
processed as described above. Each hand skeleton produced 
by MediaPipe Hands is vectorized by flattening the 21 triplets 
of (x, y, z) coordinates describing each keypoint in the 
skeleton into a single 63-dimensional vector. These vectors are 
then used as input for the SVM models. 

For training, all vectors from hand skeletons, and their 
labels in the training dataset are combined to form a data 
matrix of size (1162, 63) and a label matrix of size (1162), 
both are then passed into a scaler which centers and transforms 
each vector in the data so that it approximates a normal 
distribution. It is then passed into an SVM classifier using one-
vs-rest decision function with the given kernel type. 

For classification, a single hand-vector is passed through 
the scaler and into the train SVM classifier, and an integer 
corresponding to the predicted class is returned. 

3) Fusion of FAT and SVM models 
For this approach, the SVM model is given a 5-

dimensional vector containing the angles of each finger as 
computed by the FAT method. 1162 such vectors are used for 
training, and individual vectors are used for classification. As 
with the SVM models described above a scaler is used to pre-
process the data, and the SVM model returns an integer 
corresponding to the predicted class.  

Both the linear and RBF kernels are evaluated for this 
approach. 

C. Debouncing and repeating 

The ZYFGAS debouncing method is implemented in 
Python 3.10 as described in [7]. A ‘debouncing tick’ occurs 
for each frame in which at least one hand is detected and 
classified. The debouncer is given an alphabet of 12 gestures 
(integers 0. .11 ). Eleven cannot be generated from the 
classification algorithm but is included for use as a dummy 



initial value, allowing the user to enter any valid gesture when 
the application starts. 

The debouncer is extended to emit notifications to listeners 
each time the current gesture changes to a known state 
(transitions to the ‘unknown’ state do not trigger notification). 

The accuracy of the debouncer is then compared to two 
alternatives: 

1. Raw input – listeners receive an event every time the 
output from the classifier changes. 

2. Time-delay – listeners receive an event a pre-set amount 
of time (counted in frames) after the output from the classifier 
changes if and only if the classifier continues emitting that 
value for the duration of the time. This implementation is 
based on the debouncer described in [11]. 

As a standard debouncer evaluation method does not 
appear to have been described in the literature, a novel method 
is devised to quantitatively compare the three debouncers: 

A short video is labelled manually by removing short 
errors from the raw output, and the error count and input delay 
of each debouncer was computed. The error count is taken to 
be the Levenshtein Distance between the string of events 
emitted by the debouncer and the events defined by the label. 
The input delay is computed by subtracting the index of the 
frame during which the debouncer emitted a notification of 
change and the index of the frame when the label changed. To 
address cases when the debouncer emits too many or too few 
notifications, the edits proposed by the Levenshtein algorithm 
to make the debouncer notification string match the labels, are 
applied to the notification frame index array before 
comparison to the label notification frame index array. This 
ensures that cases where the debouncer emits an extraneous 
notification or fails to emit a notification do not affect the input 
delay score. 

Relevant properties are varied for the ZYFGAS and time-
delay debouncers and their resulting error counts and input 
delays are recorded for comparison. The time-delay 
debouncer’s time delay varies from 1. .20  frames, and the 
ZYFGAS debouncer is evaluated for each (activation 
threshold, max value) parameter pair in the set 
{(𝑡, 𝑚) | 𝑡 ∈ 1. .20, 𝑚 ∈ 𝑡. .30}. 

Finally, another novel extension to the debouncer provides 
a repeater which records the datetime of the last notification 
that was sent to listeners (the combination of the debouncer 
and this extension will be referred to as ZYFGAS-R). For each 
debouncing tick, if the current gesture is not ‘unknown’ and 
its counter remains above the activation threshold, and at least 
a pre-defined amount of time has passed since the last 
notification, the listeners are re-notified of the current gesture. 

D. Throughput 

The suitability of the proposed method for real-time 
applications requires that it can process frames at a rate fast 
enough to keep up with the video camera. To evaluate this, the 
frames-per-second throughput of the proposed method is 
computed by: 

1. Recording a 62-second video of hand gestures and 
loading its frames entirely into memory. 

2. Repeatedly capturing the time in seconds required to 
execute a pipeline of MediaPipe Hands, SVM-FA 
classification, and ZYFGAS-R debouncing over the buffer of 
frames (the time taken to initialize these components was 
excluded as it would be expected to occur only during 
application startup in real applications). 

After repeating the second step five times, the average of 
the times is taken and the number of frames in the video is 
divided by the average time taken, producing the maximum 
throughput of the solution, measured in frames-per-second.  

IV. RESULTS AND DISCUSSION 

The above method was implemented on a PC running 
Window 10 Pro, with an AMD Ryzen 9 5900X 12-Core 
Processor (3.7 GHz), 16GB of DDR4 RAM, and using a 
Microsoft LifeCam HD-3000 webcam producing 1290x720px 
video at 30fps as input. JetBrains PyCharm Professional 
2022.1 IDE was used, and the following key Python 3.10.4 
packages were installed in a miniconda environment: 

• Numpy 1.22.3 [16] 

• MediaPipe 0.8.9.1 

• Scikit learn 1.0.2 [17] 

• OpenCV 4.5.5.64 [18] 

A. Classification accuracy 

 

Fig. 7. Confusion matrices for each of the investigated classification 

approaches in order of increasing accuracy. Feature angles into SVM w/ 

linear is omitted as it performed similarly to Feature angles into SVM w/ 

RBF except with 86% accuracy. 

After training, the linear and RBF SVM models and the 
FAT method were tested against the same dataset of 36 - 40 
images per label (MediaPipe Hands did not detect any hands 
in 6 of the images in the dataset, so these images were 
excluded). As shown in Fig. 7, the SVM with a linear kernel 
and SVM-FA with an RBF kernel were the most accurate 
overall at 88%. This is 10 percentage points lower in accuracy 
than the SVM models with the same kernels proposed in [5], 
likely due to a difference in the quality of the training and 
testing data as approximately the same number of samples for 
each label was used in this study. It is also significantly lower 
than the 94.33% accuracy reported for touch-screen touchpads 
in [12], though the comparison is not entirely fair as these 
accuracy results measure classification accuracy on individual 
frames rather than the accuracy of people using the solution. 

All models except SVM-FA had significant difficulty 
distinguishing between the gestures for ‘4’ and ‘5’, and all 
models had difficulty distinguishing between ‘0’, ‘1’, and ‘2’. 



This may be resolved by improvements in size, diversity, and 
quality of training data or may reveal a deficiency in 
MediaPipe Hands’ skeletonization when most fingers are 
curled into a fist. 

B. Debouncing and repeating 

 

Fig. 8. Scatter plot comparing the error count and average input delays of 

each configuration of each debouncer type. Point size has no significance. 

Parameter combinations of the ZYFGAS debouncer were 
compared against parameters of the time-delay debouncer and 
to raw (or un-debounced) data as described above. An 
overview of the results, displayed in Fig. 8, shows a general 
trend of error count decreasing with increasing average input 
delay (although there is a grouping of poorly performing 
Frame Delay and ZYFGAS debouncers across a large range 
of input delays at error count = 4). The raw input method has 
the lowest average input delay of 0 frames (by definition), but 
the greatest error count at 7 errors. ZYFGAS can also be seen 
on the far left of each error-count grouping, meaning that it 
can provide the best error prevention capability for the least 
input delay. 

 

Fig. 9. Scatter plots visualizing the effects of ZYFGAS parameters on 

average input delay and error count. Point colors show dependent variable 
value increasing from purple to yellow following the Matplotlib ‘plasma’ 

color map1. 

As shown in Fig. 9, ZYFGAS’ average input delay is 
linearly correlated with the activation threshold, while there is 
no clear relationship between ZYFGAS properties and the 
error count. The presence of lines along the maximum value 
axis implies that the activation threshold is a stronger error 
count indicator than the maximum value. Overall, error count 
appears to be minimized when the activation threshold and 
maximum value properties are in specific ranges, these are 

 
1 See: 
http://matplotlib.org/3.5.0/tutorials/colors/colormaps.html#sequential  

likely to vary by application, dependent on the level of noise 
in the input and the application’s tolerance to error output and 
input delay. For this application, ZYFGAS appears to perform 
best against both metrics with an activation threshold near 10, 
and a maximum value near 25. 

Due to a dearth of publications in this space, it is 
impossible to quantitatively compare debouncer results to 
debouncer implementations in other publications. 

C. Throughput 

Across the five tests, the solution was found to have a 
mean throughput of 31.7fps. As a result, the proposed method 
can feasibly be used in real-time applications. While the 
number is substantially smaller than the throughput of over 
71fps reported by Osipov and Ostanin in [5], they recorded 
only the throughput of their classifier, while the 31.7 fps 
number reported here captures the entire process, including 
hand detection and skeletonization, classification, and 
debouncing. 

V. CONCLUSION 

These result show that the proposed method can be used to 
produce accurate number input into computer systems from 
real-time static hand gestures. The mean throughput of 
31.76fps, and classification accuracy of 88% (likely higher 
with the addition of a ZYFGAS debouncer) means that the 
method can provide a useful basis on which real-time 
computer systems requiring accurate and reliable gesture 
number input can be constructed, though no such system is 
evaluated in this paper. 

The best gesture classification methods attempted had an 
accuracy of 88%. This is less than the accuracy of 98.74% 
reported in [5], but likely sufficient to provide reliable static 
gesture classifications when appropriately debounced by the 
ZYFGAS method. When properly configured, the ZYFGAS 
debouncer was found to be more effective than the time-delay 
debouncer and no debouncer alternatives, emitting the fewest 
erroneous notifications with the least average input delay. 

A. Future research 

1) Gesture classification 
All classification methods had significantly lower 

accuracy than some comparable approaches in literature [5] 
[19]. Future work could likely improve these results by 
increasing the size, diversity, and quality of the training 
dataset used, and by altering values of the SVMs (for example 
the 𝐶  parameter can be adjusted to increase accuracy 
depending on the noise level of the input [6], although such 
accuracy improvements can become negligible after a point 
[20]). Training data including negative cases could also be 
used to evaluate and improve the classifiers’ handling of 
unknown inputs. 

The band of errors directly neighboring correct predictions 
in the confusion matrix for FAT shows that the thresholds used 
for each finger could be fine-tuned in future studies to produce 
better accuracy. 

Future studies could also evaluate whether FAT and SVM-
FA become more accurate if the feature angles are computed 
in three dimensions. 

Implicit in the design of the FAT method is that it 
recognizes a superset of the gestures supported by the SVM 
models since it simply counts the number of fingers that are 

http://matplotlib.org/3.5.0/tutorials/colors/colormaps.html#sequential


deemed to be straight while the SVM models are sensitive 
only to specific fingers being straight or bent. Future studies 
could improve on the specificity of FAT’s classification 
without machine learning by mapping specific straight finger 
combinations to gesture outputs. 

2) Debouncing & repeating 
Future work can improve the repeating model to make it 

more ‘natural’ for human input. One area for improvement 
would be for user interaction to provide separation to denote 
repetitions of numbers, rather than relying on a purely time-
based repeating approach. This would allow people that are 
beginning with the solution to gesture more slowly without 
causing accidental repetitions while still enabling advanced 
users to repeat quickly. 

Another issue is that the ZYFGAS debouncer (and 
derivatives) is designed for continuous streams of data. 
However, with the proposed solution it only receives data 
when hands are in frame. This leads to biases from previous 
interactions affecting the next interaction, even if they are 
spaced apart in time. With the ZYFGAS-R method, erroneous 
repetitions often occur in the first frame of the next interaction, 
though this could be remedied by altering the repeater to count 
frames instead of comparing time. Future work could 
eliminate or mitigate this problem across the rest of ZYFGAS 
by adding a ‘controller’ that manages the ZYFGAS[-R] 
Debouncer, resetting it to initial values after a pre-set amount 
of time without input. 

In future studies, it would also be useful to further refine 
debouncer evaluation methods and to evaluate debouncer 
implementations against different labelled video of greater 
length and gesture complexity and speed. This could allow, for 
example, quantification and comparison of the speed at which 
different debouncers can recover from long streams of noise, 
and how well they perform against streams of different noise 
levels. 

It would also be informative for the accuracy of people 
performing number entry with the solution to be measured, so 
a fair comparison can be made against existing HCI methods 
such as the touchpads studied in [12]. 

3) Throughput 
Future studies could likely optimize the implementation of 

the solution to improve throughput. For example, it may be 
that the throughput of the hand detection and skeletonization, 
and the SVM classification steps can be increased 
significantly with GPU acceleration. 

It would also be informative for future studies to evaluate 
the throughput of the proposed method on different devices, 
such as mobile phones or Raspberry Pi’s, to better understand 
the feasibility of the method for low-powered devices.  
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