

Real-time static hand gesture recognition from

skeleton data as numeric input for computer systems

Thomas Finlay

Computer Science and Software Engineering

University of Canterbury

Christchurch, New Zealand

tfi18@uclive.ac.nz

Prof. Richard Green

Computer Science and Software Engineering

University of Canterbury

Christchurch, New Zealand

richard.green@canterbury.ac.nz

Abstract—This paper proposes a method to enable real-time

static hand gestures to control number and command input into

computer systems. The method combines static hand gesture

recognition and skeletonization using MediaPipe Hands,

skeleton classification using a Support Vector Machine (SVM),

and an input debouncing method with a novel extension to

enable repeating. The classification method has an accuracy of

88%, less than that achieved by earlier work. The debouncer

out-performs alternatives, and the method is found to have a

viable throughput of 31.76 frames per second.

Keywords—static hand gesture, SVM, debouncing, MediaPipe

I. INTRODUCTION

Hand gestures are recognized as a natural form of human
expression and interaction. Vision-based approaches to
gesture detection and classification can allow for HCI to
become more comfortable for people as computers become
increasingly integrated in our lives [1]. Despite this promise,
such interfaces remain uncommon in consumer-facing
systems today, and most publications focus on implementing
individual components of such interfaces without considering
the whole.

This paper proposes a method to enable real-time digit-by-
digit number input using hand gestures, with the intention of
producing a solution suitable for providing an HCI interface
for setting and controlling a kitchen timer or microwave, but
which can be extended for other applications in future. For
applicability in such an environment, the input must operate in
real-time on commodity devices while remaining accurate
enough to provide a mode of input that is sufficiently efficient
and reliable for everyday use.

The solution proposed in this paper builds on prior work to
produce a pipeline that consists of the following major steps
performed for each frame of input video:

1. Hand detection and pose estimation.

2. Skeleton classification into a number from 0-5
(inclusive) using either Heuristic or Support Vector
Machine (SVM) approaches (if a hand is detected).

3. Input debouncing and time-based output repeating.

II. BACKGROUND

Large parts of this problem have already been solved to a
satisfactory degree.

Zhang et al. developed a hand detection and pose
estimation (skeletonization) method and published their work
for re-use in the Hands module of the MediaPipe framework
[2]. Previous work has shown that MediaPipe Hands works
with an accuracy of 84.57% for static single hands [3], which
should be sufficient for this purpose. In addition, the module

provides a simple API and works efficiently on commodity
hardware, with their preferred hand landmark model taking
only 16.1ms (62fps) to place landmarks on an image using the
Pixel 3 mobile phone [2].

Sung et al. devised both a Heuristic and a Neural Network
(NN) approach to real-time hand classification of MediaPipe
Hands skeleton data into gestures that runs at 30fps on
“mainstream mobile devices” [4]. The heuristic classifier was
found to be more intuitive for developers, but less accurate and
precise than the NN approach, having a recall rate of only
44.4% compared to the NN’s 87.9% recall rate, both over an
alphabet of 6 gestures.

Osipov and Ostanin devised a similar method that operated
at 71fps using an SVM with a one-to-one decision function to
classify skeleton data sourced from MediaPipe Hands into an
alphabet of 10 gestures [5]. They found that rbf, linear, and
poly kernels all provided at least 98% accuracy at 71fps
throughput while the sigmoid kernel had low accuracy. They
also described experiencing low-accuracy MediaPipe Hands
output for some of the training images in their dataset, which
they attributed to the low resolution and bounding box
cropping of the hand images in their dataset.

SVMs are a type of supervised machine learning model
often used for classification tasks. They are effective for
classifying high-dimensional data with a light memory
footprint [6].

The machine learning classification space lacks published
methods for output debouncing. However, one promising
post-processing method (ZYFGAS Debouncing) for
debouncing gesture classification output is devised by Young,
Stephens-Fripp, Gillett, Zhou, and Alici in [7]. This method
minimizes the effect of individual incorrect predictions by
culling them as soon as the input returns to the current gesture.
This approach’s memory requirements scale linearly with the
number of gestures recognized, limiting its viability for
memory-constrained applications with many classifier
outputs. However, this is unlikely to be an issue at current
scales as ‘large’ image categorization datasets contain 11221
[8] or 5247 [9] categories, amounting to only kilobytes of
memory required for debouncing. This is no barrier for the
proposed solution as it only recognizes ten distinct gestures.
The ZYFGAS approach also adds some complexity to the
debouncer as it has an ‘unknown’ state and requires an initial
state. Simpler methods such as the time delay approach
described in [10] and [11] do not have these deficiencies,
though they require some work to be usefully adapted to this
problem and are of unknown utility for this application.

Prior work by Chung, Kim, Na, and Lee found that
physical touchpads and touch-screen touchpads for numeric
input had mean error rates of 5.82% and 5.67% respectively

[12], translating to an accuracy of 94.18% and 94.33%
respectively. While their sample size was quite small at only
24 individuals, this result provides an approximate target for
the accuracy of the proposed solution if it is to compete with
these existing input methods.

III. METHOD

Fig. 1. Flow chart showing an overview of the proposed input handling

software pipeline.

The proposed method is composed of three steps
performed on each frame of video according to the flow chart
shown in Fig. 1. Each of these steps are described in more
detail in their own subsections.

A. Detection and skeletonization of hands

MediaPipe Hands is a software library developed and
maintained by Google that provides an API to detect, track,
and provide skeleton data for hands when given an image or
frame of video [13]. It is designed to run in real-time “on
mobile GPUs with high prediction quality” [4], ensuring that
it does not prevent the proposed method from maintaining
high throughput on the target devices.

An overview of the MediaPipe Hands hand detection and
skeletonization process can be seen in Fig. 2. The hand
detection bypass shown in the figure assumes that the model
is being passed a video stream, making it suitable for use in
the proposed solution. However, when MediaPipe Hands is
used on still images to produce training data for the SVM
model, this mode is unsuitable as hands will move
significantly between ‘frames’ of this data. As such, this
optimization is disabled in this context.

Fig. 2. High-level overview of the MediaPipe Hands process, including the

hand detection bypass optimization. Adapted from [2].

For each hand detected, MediaPipe returns the 3D
coordinates of 21 keypoints for the locations shown in Fig. 3.

One for the base of the palm, and four for each finger. The
annotations always follow the order of the fingers from thumb
to pinky rather than from left to right in the image, providing
a stable identity for each finger as four keypoints at specific
indices. This property means that the positions of individual
fingers are captured, rather than the shape of the hand,
allowing for gestures to be defined in relation to specific
fingers.

Fig. 3. A cropped image from the SVM training data [14] annotated with

MediaPipe Hands keypoints and their indices.

Once generated, each hand’s skeleton keypoints are passed
into the skeleton classification step.

B. Skeleton classification

During skeleton classification, the keypoint data defining
the skeleton of a single hand is classified into one of six classes
corresponding to the integers in the range [0, 5] with each
corresponding to a specific static hand gesture being
performed.

Fig. 4. An image from the Ren, Yuan, Meng, and Zhang dataset [14] for

each label.

The classification methods were evaluated for accuracy
against the RGB images in the dataset developed by Ren,
Yuan, Meng, and Zhang [14] (sample images shown in Fig.
4), with horizontally mirrored images generated to increase the
size and diversity of the dataset. The dataset was then split into
training and testing sets, with 80% of the images in each label
(mirrored images were considered their own label for this
purpose) randomly picked into the training set and the
remaining 20% moved into the testing set. The data was then
pre-processed through MediaPipe Hands, producing a CSV
file of the coordinates of the landmarks detected by MediaPipe
Hands for each label directory, increasing the speed at which
the classification methods could be trained and evaluated.

This dataset was chosen as it contains high-resolution
images of the required hand gestures, uncropped in a setting
with a realistic background. This meant that MediaPipe Hands
detected and skeletonized a hand in 96.8% of the images used
for training and testing, with at least 94.0% (188) of the 200
images per label being skeletonized. Another dataset
containing 3600 100x100px images cropped to just the hand
for each label [15] was evaluated and found to be unusable as
MediaPipe detected only 15.4% of hands in total with 0.39%
of images with the label ‘4’ skeletonized. This follows Osipov
and Ostanin’s experience of poor MediaPipe Hands
performance for cropped and low-resolution images.

The following four classification methods were evaluated
for accuracy:

1. An adaptation of feature angle thresholding (FAT) as
proposed by Sung et al. in [4].

2. Linear kernel for an SVM model operating with
MediaPipe Hands skeleton data as proposed by Osipov and
Ostanin in [5].

3. RBF kernel for an SVM model operating with
MediaPipe Hands skeleton data as proposed by Osipov and
Ostanin in [5].

4. RBF kernel for SVM operating with feature angles
(SVM-FA) derived from FAT (A linear kernel was also
evaluated but is omitted due to very similar accuracy results).

1) FAT
The FAT method was implemented in pure Python 3.10,

using only the standard library. Unlike in [4], this
implementation operated in two dimensions.

Fig. 5. Finger segments shown running from Si+1 to Si and each segment’s

angle from the horizontal.

Fig. 6. Vector addition diagrams showing S1, S2, and S3 added to S0 in the

context of the thumb from Fig. 5. The blue angles shown are the finger angle

candidates. In this case, 27° is the greatest angle and so is chosen as the finger

angle F0.

The method models each finger as four ‘segments’ (unit
vectors) with an angle from the horizontal as shown in Fig. 5.
For each finger the acute angle formed by the addition of the
first segment to every other segment in the finger is computed
and the difference between 180° and that angle is taken as a
candidate finger angle, shown diagrammatically in Fig. 6. The
finger angle is the candidate with the greatest magnitude.

Formally and using Radians, the computation follows like
so:

For each pair (𝑃𝑖 , 𝑃𝑖+1) (where 𝑖 ∈ [0, 3] is an integer) of
consecutive keypoints in a finger, the angle of the segment 𝑆𝑖
is defined as:

𝑆𝑖 = 𝑎𝑡𝑎𝑛2(𝑃𝑖+1𝑦
− 𝑃𝑖 𝑦

, 𝑃𝑖+1𝑥
− 𝑃𝑖𝑥

)

 The angle of the finger 𝐹𝑖 is then taken to be:

𝐹𝑖 = max {||(𝜋 − 𝑆0) + 𝑆𝑗| − 𝜋 | | 𝑗 = 1. .3}

Finally, each finger is assigned a hand-tuned finger angle
threshold. The finger is counted as ‘straight’ if the finger angle
is at least the threshold. The number produced by the FAT
method is the number of fingers that are ‘straight’. The
thresholds were tuned manually by experimentation, then later
tested using the dataset and compared for accuracy against
other classification methods.

2) SVM models
The first two SVM models differ only in the kernel chosen

and so are discussed simultaneously in this section.

The models are trained using identical datasets pre-
processed as described above. Each hand skeleton produced
by MediaPipe Hands is vectorized by flattening the 21 triplets
of (x, y, z) coordinates describing each keypoint in the
skeleton into a single 63-dimensional vector. These vectors are
then used as input for the SVM models.

For training, all vectors from hand skeletons, and their
labels in the training dataset are combined to form a data
matrix of size (1162, 63) and a label matrix of size (1162),
both are then passed into a scaler which centers and transforms
each vector in the data so that it approximates a normal
distribution. It is then passed into an SVM classifier using one-
vs-rest decision function with the given kernel type.

For classification, a single hand-vector is passed through
the scaler and into the train SVM classifier, and an integer
corresponding to the predicted class is returned.

3) Fusion of FAT and SVM models
For this approach, the SVM model is given a 5-

dimensional vector containing the angles of each finger as
computed by the FAT method. 1162 such vectors are used for
training, and individual vectors are used for classification. As
with the SVM models described above a scaler is used to pre-
process the data, and the SVM model returns an integer
corresponding to the predicted class.

Both the linear and RBF kernels are evaluated for this
approach.

C. Debouncing and repeating

The ZYFGAS debouncing method is implemented in
Python 3.10 as described in [7]. A ‘debouncing tick’ occurs
for each frame in which at least one hand is detected and
classified. The debouncer is given an alphabet of 12 gestures
(integers 0. .11). Eleven cannot be generated from the
classification algorithm but is included for use as a dummy

initial value, allowing the user to enter any valid gesture when
the application starts.

The debouncer is extended to emit notifications to listeners
each time the current gesture changes to a known state
(transitions to the ‘unknown’ state do not trigger notification).

The accuracy of the debouncer is then compared to two
alternatives:

1. Raw input – listeners receive an event every time the
output from the classifier changes.

2. Time-delay – listeners receive an event a pre-set amount
of time (counted in frames) after the output from the classifier
changes if and only if the classifier continues emitting that
value for the duration of the time. This implementation is
based on the debouncer described in [11].

As a standard debouncer evaluation method does not
appear to have been described in the literature, a novel method
is devised to quantitatively compare the three debouncers:

A short video is labelled manually by removing short
errors from the raw output, and the error count and input delay
of each debouncer was computed. The error count is taken to
be the Levenshtein Distance between the string of events
emitted by the debouncer and the events defined by the label.
The input delay is computed by subtracting the index of the
frame during which the debouncer emitted a notification of
change and the index of the frame when the label changed. To
address cases when the debouncer emits too many or too few
notifications, the edits proposed by the Levenshtein algorithm
to make the debouncer notification string match the labels, are
applied to the notification frame index array before
comparison to the label notification frame index array. This
ensures that cases where the debouncer emits an extraneous
notification or fails to emit a notification do not affect the input
delay score.

Relevant properties are varied for the ZYFGAS and time-
delay debouncers and their resulting error counts and input
delays are recorded for comparison. The time-delay
debouncer’s time delay varies from 1. .20 frames, and the
ZYFGAS debouncer is evaluated for each (activation
threshold, max value) parameter pair in the set
{(𝑡, 𝑚) | 𝑡 ∈ 1. .20, 𝑚 ∈ 𝑡. .30}.

Finally, another novel extension to the debouncer provides
a repeater which records the datetime of the last notification
that was sent to listeners (the combination of the debouncer
and this extension will be referred to as ZYFGAS-R). For each
debouncing tick, if the current gesture is not ‘unknown’ and
its counter remains above the activation threshold, and at least
a pre-defined amount of time has passed since the last
notification, the listeners are re-notified of the current gesture.

D. Throughput

The suitability of the proposed method for real-time
applications requires that it can process frames at a rate fast
enough to keep up with the video camera. To evaluate this, the
frames-per-second throughput of the proposed method is
computed by:

1. Recording a 62-second video of hand gestures and
loading its frames entirely into memory.

2. Repeatedly capturing the time in seconds required to
execute a pipeline of MediaPipe Hands, SVM-FA
classification, and ZYFGAS-R debouncing over the buffer of
frames (the time taken to initialize these components was
excluded as it would be expected to occur only during
application startup in real applications).

After repeating the second step five times, the average of
the times is taken and the number of frames in the video is
divided by the average time taken, producing the maximum
throughput of the solution, measured in frames-per-second.

IV. RESULTS AND DISCUSSION

The above method was implemented on a PC running
Window 10 Pro, with an AMD Ryzen 9 5900X 12-Core
Processor (3.7 GHz), 16GB of DDR4 RAM, and using a
Microsoft LifeCam HD-3000 webcam producing 1290x720px
video at 30fps as input. JetBrains PyCharm Professional
2022.1 IDE was used, and the following key Python 3.10.4
packages were installed in a miniconda environment:

• Numpy 1.22.3 [16]

• MediaPipe 0.8.9.1

• Scikit learn 1.0.2 [17]

• OpenCV 4.5.5.64 [18]

A. Classification accuracy

Fig. 7. Confusion matrices for each of the investigated classification

approaches in order of increasing accuracy. Feature angles into SVM w/

linear is omitted as it performed similarly to Feature angles into SVM w/

RBF except with 86% accuracy.

After training, the linear and RBF SVM models and the
FAT method were tested against the same dataset of 36 - 40
images per label (MediaPipe Hands did not detect any hands
in 6 of the images in the dataset, so these images were
excluded). As shown in Fig. 7, the SVM with a linear kernel
and SVM-FA with an RBF kernel were the most accurate
overall at 88%. This is 10 percentage points lower in accuracy
than the SVM models with the same kernels proposed in [5],
likely due to a difference in the quality of the training and
testing data as approximately the same number of samples for
each label was used in this study. It is also significantly lower
than the 94.33% accuracy reported for touch-screen touchpads
in [12], though the comparison is not entirely fair as these
accuracy results measure classification accuracy on individual
frames rather than the accuracy of people using the solution.

All models except SVM-FA had significant difficulty
distinguishing between the gestures for ‘4’ and ‘5’, and all
models had difficulty distinguishing between ‘0’, ‘1’, and ‘2’.

This may be resolved by improvements in size, diversity, and
quality of training data or may reveal a deficiency in
MediaPipe Hands’ skeletonization when most fingers are
curled into a fist.

B. Debouncing and repeating

Fig. 8. Scatter plot comparing the error count and average input delays of

each configuration of each debouncer type. Point size has no significance.

Parameter combinations of the ZYFGAS debouncer were
compared against parameters of the time-delay debouncer and
to raw (or un-debounced) data as described above. An
overview of the results, displayed in Fig. 8, shows a general
trend of error count decreasing with increasing average input
delay (although there is a grouping of poorly performing
Frame Delay and ZYFGAS debouncers across a large range
of input delays at error count = 4). The raw input method has
the lowest average input delay of 0 frames (by definition), but
the greatest error count at 7 errors. ZYFGAS can also be seen
on the far left of each error-count grouping, meaning that it
can provide the best error prevention capability for the least
input delay.

Fig. 9. Scatter plots visualizing the effects of ZYFGAS parameters on

average input delay and error count. Point colors show dependent variable
value increasing from purple to yellow following the Matplotlib ‘plasma’

color map1.

As shown in Fig. 9, ZYFGAS’ average input delay is
linearly correlated with the activation threshold, while there is
no clear relationship between ZYFGAS properties and the
error count. The presence of lines along the maximum value
axis implies that the activation threshold is a stronger error
count indicator than the maximum value. Overall, error count
appears to be minimized when the activation threshold and
maximum value properties are in specific ranges, these are

1 See:
http://matplotlib.org/3.5.0/tutorials/colors/colormaps.html#sequential

likely to vary by application, dependent on the level of noise
in the input and the application’s tolerance to error output and
input delay. For this application, ZYFGAS appears to perform
best against both metrics with an activation threshold near 10,
and a maximum value near 25.

Due to a dearth of publications in this space, it is
impossible to quantitatively compare debouncer results to
debouncer implementations in other publications.

C. Throughput

Across the five tests, the solution was found to have a
mean throughput of 31.7fps. As a result, the proposed method
can feasibly be used in real-time applications. While the
number is substantially smaller than the throughput of over
71fps reported by Osipov and Ostanin in [5], they recorded
only the throughput of their classifier, while the 31.7 fps
number reported here captures the entire process, including
hand detection and skeletonization, classification, and
debouncing.

V. CONCLUSION

These result show that the proposed method can be used to
produce accurate number input into computer systems from
real-time static hand gestures. The mean throughput of
31.76fps, and classification accuracy of 88% (likely higher
with the addition of a ZYFGAS debouncer) means that the
method can provide a useful basis on which real-time
computer systems requiring accurate and reliable gesture
number input can be constructed, though no such system is
evaluated in this paper.

The best gesture classification methods attempted had an
accuracy of 88%. This is less than the accuracy of 98.74%
reported in [5], but likely sufficient to provide reliable static
gesture classifications when appropriately debounced by the
ZYFGAS method. When properly configured, the ZYFGAS
debouncer was found to be more effective than the time-delay
debouncer and no debouncer alternatives, emitting the fewest
erroneous notifications with the least average input delay.

A. Future research

1) Gesture classification
All classification methods had significantly lower

accuracy than some comparable approaches in literature [5]
[19]. Future work could likely improve these results by
increasing the size, diversity, and quality of the training
dataset used, and by altering values of the SVMs (for example
the 𝐶 parameter can be adjusted to increase accuracy
depending on the noise level of the input [6], although such
accuracy improvements can become negligible after a point
[20]). Training data including negative cases could also be
used to evaluate and improve the classifiers’ handling of
unknown inputs.

The band of errors directly neighboring correct predictions
in the confusion matrix for FAT shows that the thresholds used
for each finger could be fine-tuned in future studies to produce
better accuracy.

Future studies could also evaluate whether FAT and SVM-
FA become more accurate if the feature angles are computed
in three dimensions.

Implicit in the design of the FAT method is that it
recognizes a superset of the gestures supported by the SVM
models since it simply counts the number of fingers that are

http://matplotlib.org/3.5.0/tutorials/colors/colormaps.html#sequential

deemed to be straight while the SVM models are sensitive
only to specific fingers being straight or bent. Future studies
could improve on the specificity of FAT’s classification
without machine learning by mapping specific straight finger
combinations to gesture outputs.

2) Debouncing & repeating
Future work can improve the repeating model to make it

more ‘natural’ for human input. One area for improvement
would be for user interaction to provide separation to denote
repetitions of numbers, rather than relying on a purely time-
based repeating approach. This would allow people that are
beginning with the solution to gesture more slowly without
causing accidental repetitions while still enabling advanced
users to repeat quickly.

Another issue is that the ZYFGAS debouncer (and
derivatives) is designed for continuous streams of data.
However, with the proposed solution it only receives data
when hands are in frame. This leads to biases from previous
interactions affecting the next interaction, even if they are
spaced apart in time. With the ZYFGAS-R method, erroneous
repetitions often occur in the first frame of the next interaction,
though this could be remedied by altering the repeater to count
frames instead of comparing time. Future work could
eliminate or mitigate this problem across the rest of ZYFGAS
by adding a ‘controller’ that manages the ZYFGAS[-R]
Debouncer, resetting it to initial values after a pre-set amount
of time without input.

In future studies, it would also be useful to further refine
debouncer evaluation methods and to evaluate debouncer
implementations against different labelled video of greater
length and gesture complexity and speed. This could allow, for
example, quantification and comparison of the speed at which
different debouncers can recover from long streams of noise,
and how well they perform against streams of different noise
levels.

It would also be informative for the accuracy of people
performing number entry with the solution to be measured, so
a fair comparison can be made against existing HCI methods
such as the touchpads studied in [12].

3) Throughput
Future studies could likely optimize the implementation of

the solution to improve throughput. For example, it may be
that the throughput of the hand detection and skeletonization,
and the SVM classification steps can be increased
significantly with GPU acceleration.

It would also be informative for future studies to evaluate
the throughput of the proposed method on different devices,
such as mobile phones or Raspberry Pi’s, to better understand
the feasibility of the method for low-powered devices.

REFERENCES

[1] S. S. Rautaray and A. Agrawal, "Vision based hand

gesture recognition for human computer

interaction: a survey," Artificial Intelligence

Review, vol. 43, no. 1, pp. 1-54, 2015/01/01 2015,

doi: 10.1007/s10462-012-9356-9.

[2] F. Zhang et al., "MediaPipe Hands: On-device

Real-time Hand Tracking," p. arXiv:2006.10214.

[Online]. Available:

https://ui.adsabs.harvard.edu/abs/2020arXiv200610

214Z

[3] J. Sanalohit and T. Katanyukul, "TFS Recognition:

Investigating MPH]{Thai Finger Spelling

Recognition: Investigating MediaPipe Hands

Potentials," p. arXiv:2201.03170. [Online].

Available:

https://ui.adsabs.harvard.edu/abs/2022arXiv220103

170S

[4] G. Sung et al., "On-device Real-time Hand Gesture

Recognition," p. arXiv:2111.00038. [Online].

Available:

https://ui.adsabs.harvard.edu/abs/2021arXiv211100

038S

[5] A. Osipov and M. Ostanin, "Real-time static

custom gestures recognition based on skeleton

hand," in 2021 International Conference

"Nonlinearity, Information and Robotics" (NIR),

26-29 Aug. 2021 2021, pp. 1-4, doi:

10.1109/NIR52917.2021.9665809.

[6] s.-l. developers. "1.4. Support Vector Machines."

https://scikit-learn.org/stable/modules/svm.html

(accessed 30/04/2022, 2022).

[7] S. Young, B. Stephens-Fripp, A. Gillett, H. Zhou,

and G. Alici, "Pattern Recognition for Prosthetic

Hand User’s Intentions using EMG Data and

Machine Learning Techniques," in 2019

IEEE/ASME International Conference on

Advanced Intelligent Mechatronics (AIM), 8-12

July 2019 2019, pp. 544-550, doi:

10.1109/AIM.2019.8868766.

[8] B. Wu et al., "Tencent ML-Images: A Large-Scale

Multi-Label Image Database for Visual

Representation Learning," IEEE Access, vol. 7, pp.

172683-172693, 2019, doi:

10.1109/ACCESS.2019.2956775.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

F.-F. Li, ImageNet: a Large-Scale Hierarchical

Image Database. 2009, pp. 248-255.

[10] Malk and Vsync. "debouncing - Can someone

explain the "debounce" function in Javascript."

https://stackoverflow.com/a/24004942 (accessed

30/04/2022, 2022).

[11] L. Contributors. "Lodash Documentation."

https://lodash.com/docs/4.17.15#debounce

(accessed 03/05/2022, 2022).

[12] M. K. Chung, D. Kim, S. Na, and D. Lee,

"Usability evaluation of numeric entry tasks on

keypad type and age," International Journal of

Industrial Ergonomics, vol. 40, no. 1, pp. 97-105,

2010/01/01/ 2010, doi:

https://doi.org/10.1016/j.ergon.2009.08.001.

[13] Google. "Hands - mediapipe." GitHub.

https://google.github.io/mediapipe/solutions/hands

(accessed 27/04/2022.

[14] Z. Ren, J. Yuan, J. Meng, and Z. Zhang, "Robust

Part-Based Hand Gesture Recognition Using

Kinect Sensor," IEEE Transactions on Multimedia,

vol. 15, no. 5, pp. 1110-1120, 2013, doi:

10.1109/TMM.2013.2246148.

[15] P. Koryakin. Fingers. [Online]. Available:

https://www.kaggle.com/datasets/koryakinp/fingers

[16] C. R. Harris et al., "Array programming with

NumPy," Nature, vol. 585, no. 7825, pp. 357-362,

2020/09/01 2020, doi: 10.1038/s41586-020-2649-2.

[17] F. Pedregosa et al., "Scikit-learn: Machine

Learning in Python," Journal of Machine Learning

Research, vol. 12, no. 85, pp. 2825-2830, 2011

https://ui.adsabs.harvard.edu/abs/2020arXiv200610214Z
https://ui.adsabs.harvard.edu/abs/2020arXiv200610214Z
https://ui.adsabs.harvard.edu/abs/2022arXiv220103170S
https://ui.adsabs.harvard.edu/abs/2022arXiv220103170S
https://ui.adsabs.harvard.edu/abs/2021arXiv211100038S
https://ui.adsabs.harvard.edu/abs/2021arXiv211100038S
https://scikit-learn.org/stable/modules/svm.html
https://stackoverflow.com/a/24004942
https://lodash.com/docs/4.17.15#debounce
https://doi.org/10.1016/j.ergon.2009.08.001
https://google.github.io/mediapipe/solutions/hands
https://www.kaggle.com/datasets/koryakinp/fingers

2011. [Online]. Available:

http://jmlr.org/papers/v12/pedregosa11a.html.

[18] G. Bradski, "The OpenCV Library," Dr. Dobb's

Journal of Software Tools, 2000.

[19] M. H. Ismail, S. A. Dawwd, and F. H. Ali, "Static

hand gesture recognition of Arabic sign language

by using deep CNNs," Indonesian Journal of

Electrical Engineering and Computer Science,

2021.

[20] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,

and C.-J. Lin, "LIBLINEAR: A Library for Large

Linear Classification," J. Mach. Learn. Res., vol. 9,

pp. 1871–1874, 2008.

http://jmlr.org/papers/v12/pedregosa11a.html

	I. Introduction
	II. Background
	III. Method
	A. Detection and skeletonization of hands
	B. Skeleton classification
	1) FAT
	2) SVM models
	3) Fusion of FAT and SVM models

	C. Debouncing and repeating
	D. Throughput

	IV. Results and Discussion
	A. Classification accuracy
	B. Debouncing and repeating
	C. Throughput

	V. Conclusion
	A. Future research
	1) Gesture classification
	2) Debouncing & repeating
	3) Throughput
	References

